Fast Local Support Vector Machines for Large Datasets

نویسندگان

  • Nicola Segata
  • Enrico Blanzieri
چکیده

Local SVM is a classification method that combines instance-based learning and statistical machine learning. It builds an SVM on the feature space neighborhood of the query point in the training set and uses it to predict its class. There is both empirical and theoretical evidence that Local SVM can improve over SVM and kNN in terms of classification accuracy, but the computational cost of the method permits the application only on small datasets. Here we propose FastLSVM, a classifier based on Local SVM that decreases the number of SVMs that must be built in order to be suitable for large datasets. FastLSVM precomputes a set of local SVMs in the training set and assigns to each model all the points lying in the central neighborhood of the k points on which it is trained. The prediction is performed applying to the query point the model corresponding to its nearest neighbor in the training set. The empirical evaluation we provide points out that FastLSVM is a good approximation of Local SVM and its computational performances on big datasets (a large artificial problem with 100000 samples and on a very large real problem with more than 500000 samples) dramatically ameliorate SVM ones improving also the generalization accuracies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

Bounds on the Generalization Performance of Kernel Machines Ensembles

We study the problem of learning using combinations of machines. In particular we present new theoretical bounds on the generalization performance of voting ensembles of kernel machines. Special cases considered are bagging and support vector machines. We present experimental results supporting the theoretical bounds, and describe characteristics of kernel machines ensembles suggested from the ...

متن کامل

Efficient Large Scale Linear Programming Support Vector Machines

This paper presents a decomposition method for efficiently constructing 1-norm Support Vector Machines (SVMs). The decomposition algorithm introduced in this paper possesses many desirable properties. For example, it is provably convergent, scales well to large datasets, is easy to implement, and can be extended to handle support vector regression and other SVM variants. We demonstrate the effi...

متن کامل

Bounds on the Generalization Performance of Kernel Machine Ensembles

We study the problem of learning using combinations of machines. In particular we present new theoretical bounds on the generalization performance of voting ensembles of kernel machines. Special cases considered are bagging and support vector machines. We present experimental results supporting the theoretical bounds, and describe characteristics of kernel machines ensembles suggested from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009